Compact Lie Group Actions on Closed Manifolds of Non-positive Curvature
نویسنده
چکیده
A. Borel proved that, if a finite group F acts effectively and continuously on a closed aspherical manifold M with centerless fundamental group π1(M), then a natural homomorphism ψ from F to the outer automorphism group Outπ1(M) of π1(M), called the associated abstract kernel, is a monomorphism. In this paper, we investigate to what extent Borel’s theorem holds for a compact Lie group G acting effectively and smoothly on a particular orientable aspherical manifold N admitting a Riemannian metric g0 of non-positive curvature in case that π1(N) has a non-trivial center. It turns out that if G attains the maximal dimension equal to the rank of Center π1(N) and the metric g0 is real analytic, then any element of G defining a diffemorphism homotopic to the identity of N must be contained in the identity component G0 of G. Moreover, if the inner automorphism group of π1(N) is torsion free, then the associated abstract kernel ψ : G/G0 → Outπ1(N) is a monomorphism. The same result holds for the nonorientable N’s under certain techical assumptions. Our result is an application of a theorem by Schoen-Yau (Topology, 18 (1979), 361-380) on harmonic mappings. Mathematics Subject Classifications (2000): Primary: 57S25, 53C43; Secondary: 20F34.
منابع مشابه
ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملOn cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature
In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.
متن کاملA remark on left invariant metrics on compact Lie groups
The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...
متن کامل