Compact Lie Group Actions on Closed Manifolds of Non-positive Curvature

نویسنده

  • BIN XU
چکیده

A. Borel proved that, if a finite group F acts effectively and continuously on a closed aspherical manifold M with centerless fundamental group π1(M), then a natural homomorphism ψ from F to the outer automorphism group Outπ1(M) of π1(M), called the associated abstract kernel, is a monomorphism. In this paper, we investigate to what extent Borel’s theorem holds for a compact Lie group G acting effectively and smoothly on a particular orientable aspherical manifold N admitting a Riemannian metric g0 of non-positive curvature in case that π1(N) has a non-trivial center. It turns out that if G attains the maximal dimension equal to the rank of Center π1(N) and the metric g0 is real analytic, then any element of G defining a diffemorphism homotopic to the identity of N must be contained in the identity component G0 of G. Moreover, if the inner automorphism group of π1(N) is torsion free, then the associated abstract kernel ψ : G/G0 → Outπ1(N) is a monomorphism. The same result holds for the nonorientable N’s under certain techical assumptions. Our result is an application of a theorem by Schoen-Yau (Topology, 18 (1979), 361-380) on harmonic mappings. Mathematics Subject Classifications (2000): Primary: 57S25, 53C43; Secondary: 20F34.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

On cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature

In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.

متن کامل

A remark on left invariant metrics on compact Lie groups

The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005